MS Lesion Segmentation using Markov Random Fields

نویسندگان

  • N. K. Subbanna
  • M. Shah
  • S. J. Francis
  • S. Narayanan
  • D. L. Collins
  • D. L. Arnold
  • T. Arbel
چکیده

We present a fully automated framework for identifying multiple sclerosis (MS) lesions from multispectral human brain magnetic resonance images (MRIs). The brain tissue intensities and lesions are both modeled using Markov Random Fields (MRFs) to incorporate local spatial variations and neighborhood information. In this work, we model all brain tissues, including lesions, as separate classes as opposed to the common approach of modelling the lesions as outliers of the brain tissues. A maximum probability estimate is obtained by arriving at the global convergence of the MRFs using Simulated Annealing. Finally, probability surface discontinuities due to noise and local intensity variations are avoided by incorporating a spline based smoothing function following the MRF modelling. The algorithm is validated on a set of real MRI brain volumes of MS patients with widely varying lesion loads by comparing the results against a silver standard derived from manual expert labellings. The algorithm yields favorable results, including in the posterior fossa where few methods have proved successful. Further, our algorithm yields fewer false negatives than is usual in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Mrf and Random Forest Segmentation of Ms Lesions and Healthy Tissues in Brain Mri

In this paper, we present an automatic hierarchical framework for the segmentation of a variety healthy tissues and lesions in brain MRI of patients with Multiple Sclerosis (MS). At the voxel level, lesion and tissue labels are estimated through a Markov Random Field (MRF) segmentation framework that leverages spatial prior probabilities for 9 healthy tissues through multi-atlas fusion (MALF). ...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Simultaneous Lesion Segmentation and Bias Correction in Breast Ultrasound Images

Ultrasound (US) B-mode images often show intensity inhomogeneities caused by an ultrasonic beam attenuation within the body. Due to this artifact, the conventional segmentation approaches based on intensity or intensity-statistics often do not obtain accurate results. In this paper, Markov Random Fields (MRF) and a maximum a posteriori (MAP) framework in combination with US image spatial inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009